Optical tweezers for trapping in a microfluidic environment.

APPLIED OPTICS(2018)

引用 9|浏览5
暂无评分
摘要
Optical tweezers use the force from a light beam to implement a precise gripping tool. Based purely on an optical principle, it works without any bodily contact with the object. In this paper we describe an optical tweezers that targets an application within the framework of nuclear magnetic resonance (NMR) spectroscopy of small objects, which are embedded inside a microfluidic channel that will be integrated in a micro-NMR detector. In the project's final stages, the whole system will be installed within the wide bore of a superconducting magnet. The aim is to precisely maintain the position of the object to be measured, without the use of susceptibility disturbing materials or geometries. In this contribution we focus on the design and construction of the tweezers. For the optical force simulation of the system we used a geometrical optics approach, which we combined with a ray fan description of the output beam of an optical system. By embedding both techniques within an iterative design process, we were able to design efficient optical tweezers that met the numerous constraints. Based on details of the constraints and requirements given by the application, different system concepts were derived and studied. Next, a highly adapted and efficient optical trapping system was designed and manufactured. After the components were characterized using vertical scanning interferometry, the system was assembled to achieve a monolithic optical component. The proper function of the optical tweezers was successfully tested by optical trapping of fused silica particles. (C) 2018 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要