Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology

Cardiovascular drugs and therapy(2018)

引用 3|浏览12
暂无评分
摘要
Purpose Mechanical stretch increases sodium and calcium entry into myocytes and activates the late sodium current. GS967, a triazolopyridine derivative, is a sodium channel blocker with preferential effects on the late sodium current. The present study evaluates whether GS967 inhibits or modulates the arrhythmogenic electrophysiological effects of myocardial stretch. Methods Atrial and ventricular refractoriness and ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts ( n = 28) using epicardial multiple electrodes and high-resolution mapping techniques under control conditions and during the perfusion of GS967 at different concentrations (0.03, 0.1, and 0.3 μM). Results On comparing ventricular refractoriness, conduction velocity and wavelength obtained before stretch had no significant changes under each GS967 concentration while atrial refractoriness increased under GS967 0.3 μM. Under GS967, the stretch-induced changes were attenuated, and no significant differences were observed between before and during stretch. GS967 0.3 μM diminished the normal stretch-induced changes resulting in longer (less shortened) atrial refractoriness (138 ± 26 ms vs 95 ± 9 ms; p < 0.01), ventricular refractoriness (155 ± 18 ms vs 124 ± 16 ms; p < 0.01) and increments in spectral concentration (23 ± 5% vs 17 ± 2%; p < 0.01), the fifth percentile of ventricular activation intervals (46 ± 8 ms vs 31 ± 3 ms; p < 0.05), and wavelength of ventricular fibrillation (2.5 ±0.5 cm vs 1.7 ± 0.3 cm; p < 0.05) during stretch. The stretch-induced increments in dominant frequency during ventricular fibrillation (control = 38%, 0.03 μM = 33%, 0.1 μM = 33%, 0.3 μM = 14%; p < 0.01) and the stretch-induced increments in arrhythmia complexity index (control = 62%, 0.03μM = 41%, 0.1 μM = 32%, 0.3 μM = 16%; p < 0.05) progressively decreased on increasing the GS967 concentration. Conclusions GS967 attenuates stretch-induced changes in cardiac electrophysiology.
更多
查看译文
关键词
Mechanoelectric feedback,Myocardial stretch,Late sodium current,GS967,Ventricular fibrillation,Activation mapping of arrhythmias
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要