Transgenic Metarhizium Pingshaense Synergistically Ameliorates Pyrethroid-Resistance In Wild-Caught, Malaria-Vector Mosquitoes

PLOS ONE(2018)

引用 13|浏览13
暂无评分
摘要
Transgenic Metarhizium pingshaense expressing the spider neurotoxin Hybrid (Met-Hybrid) kill mosquitoes faster and at lower spore doses than wild-type strains. In this study, we demonstrate that this approach dovetails with the cornerstone of current malaria control: pyrethroid-insecticides, which are the cornerstone of current malaria control. We used World Health Organization (WHO) tubes, to compare the impact on insecticide resistance of Met-Hybrid with red fluorescent M. pingshaense (Met-RFP), used as a proxy for the wild-type fungus. Insecticides killed less than 20% of Anopheles coluzzii and Anopheles gambiae s.s. mosquitoes collected in a malaria endemic region of Burkina Faso where pyrethroid use is common. Seven days post-infection, mortality for insecticide-sensitive and resistant mosquitoes averaged 94% with Met-Hybrid and 64% with Met-RFP, with LT80 values of 5.32 +/- 0.199 days and 7.76 +/- 0.183 days, respectively. Eighty nine percent of insecticide-resistant mosquitoes exposed to permethrin five days post-infection with Met-Hybrid died within 24 hours: only 22% died from Met-Hybrid alone over this 24-hour period. Compared to MetRFP, Met-Hybrid also significantly reduced flight capacity of mosquitoes 3 to 5 days post-infection. Based on WHOPES phase I laboratory susceptibility bioassays, transgenic Met-Hybrid provides effective biological control for adult African malaria vectors that may be used to synergistically manage insecticide resistance with current methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要