谷歌浏览器插件
订阅小程序
在清言上使用

Ligand Sequential Replacement on Chromium(III)-Aqua Complexes by L-Alanine and Other Biological Amino Acids: A Kinetic Perspective.

Joaquin F. Perez-Benito, Guillem Martinez-Cereza

˜The œjournal of physical chemistry A/˜The œjournal of physical chemistry A(2018)

引用 8|浏览6
暂无评分
摘要
The ligand sequential replacement on chromium(III)-aqua complexes by l-alanine in slightly acidic aqueous solutions (pH range: 3.55-5.61) has been kinetically followed by means of UV-vis spectrophotometry. A two rate constant model has been applied to fit the absorbance-time data, corresponding to the formation ( k1) and decay ( k2) of an intermediate not reactive enough to be in steady state (long-lived intermediate). The kinetic orders of the amino acid were fractional (0.40 ± 0.03 for k1 and 0.40 ± 0.02 for k2). The two steps showed base catalysis, and the activation energies were 60 ± 3 (for k1) and 83 ± 6 (for k2) kJ mol-1. The rate constants for the coordination of the first l-alanine ligand followed the sequence CrOH2+ < Cr(OH)2+ < Cr(OH)3, Cr3+ being almost inactive. This suggests that the increase in the reaction rate with increasing pH was caused by the enhancement of the lability of the Cr(III)-aqua bonds induced by the presence of hydroxo ligands. The activation parameters for a series of ligand substitution on Cr(III)-aqua complexes by organic molecules yielded a statistically significant enthalpy-entropy linear plot with an isokinetic temperature of 296 ± 21 K.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要