Using molecular simulations to probe pore structures and polymer partitioning in size exclusion chromatography.

Journal of chromatography. A(2018)

引用 9|浏览2
暂无评分
摘要
Molecular simulations have been extensively utilized to understand and predict the polymer partitioning in size-exclusion chromatography (SEC). However, idealized pore models (e.g., cylindrical, spherical, and slit pores) were often used to represent the porous media in an SEC column, which leads to significant deviations in describing the geometry and the size of the pores. In this work, several complex pore models were derived from body-centered cubic, random, and gel packing of monodisperse spherical sol particles using simulation methodology. The mechanical stabilities of these structures were determined based on particle coordination numbers. Pore size distributions of these porous structures were compared to a commercially available, wide-pore superficially porous particle. Then, Gibbs ensemble Monte Carlo simulations were performed to compute the pore-to-bulk partitioning coefficient KSEC of a polymer chain with complex pore models. The effects of particle size, packing structure, and porosity on KSEC were explored. In addition, structural analysis provides insight into the conformation of polymers in the pores and its effect on the partitioning behavior. This study promotes the understanding of pore structures in SEC columns and enables more accurate predictions of KSEC with less ambiguity in pore geometry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要