Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification

SCIENTIFIC REPORTS(2018)

引用 9|浏览7
暂无评分
摘要
Genetic studies have shown that FGF10/FGFR2 signaling is required for airway branching morphogenesis and FGF10 functions as a chemoattractant factor for distal epithelial cells during lung development. However, the detail downstream cellular and molecular mechanisms have not been fully characterized. Using live imaging of ex vivo cultured lungs, we found that tip airway epithelial progenitor cells migrate faster than cleft cells during airway bud formation and this migration process is controlled by FGFR2-mediated ERK1/2 signaling. Additionally, we found that airway progenitor cells that migrate faster tend to become distal airway progenitor cells. We identified that Anxa4 is a downstream target of ERK1/2 signaling. Anxa4 −/− airway epithelial cells exhibit a “lag-behind” behavior and tend to stay at the stalk airways. Moreover, we found that Anxa4 -overexpressing cells tend to migrate to the bud tips. Finally, we demonstrated that Anxa4 functions redundantly with Anxa1 and Anxa6 in regulating endoderm budding process. Our study demonstrates that ERK1/2/Anxa4 signaling plays a role in promoting the migration of airway epithelial progenitor cells to distal airway tips and ensuring their distal cell fate.
更多
查看译文
关键词
Airway Progenitor Cells,Cell Clefts,Endodermal Bud,Distal Airways,Lung Endoderm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要