1,25-Dihydroxyvitamin D 3 increases the methionine cycle, CD4 + T cell DNA methylation and Helios + Foxp3 + T regulatory cells to reverse autoimmune neurodegenerative disease.

Journal of Neuroimmunology(2018)

引用 24|浏览23
暂无评分
摘要
We investigated how one calcitriol dose plus vitamin D3 reverses experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis model. This protocol rapidly increased CD4+ T cell Ikzf2 transcripts, Helios protein, and CD4+Helios+FoxP3+ T regulatory cells. It also rapidly increased CD4+ T cell Bhmt1 transcripts, betaine:homocysteine methyltransferase-1 (BHMT1) enzyme activity, and global DNA methylation. BHMT1 transmethylates homocysteine to replenish methionine. Targeting the Vdr gene in T cells decreased Ikzf2 and Bhmt1 gene expression, reduced DNA methylation, and elevated systemic homocysteine in mice with EAE. We hypothesize that calcitriol drives a transition from encephalitogenic CD4+ T cell to Treg cell dominance by upregulating Ikzf2 and Bhmt1, recycling homocysteine to methionine, reducing homocysteine toxicity, maintaining DNA methylation, and stabilizing CD4+Helios+FoxP3+Tregulatory cells. Conserved vitamin D-responsive element (VDRE)-type sequences in the Bhmt1 and Ikzf2 promoters, the universal need for methionine in epigenetic regulation, and betaine's protective effects in MTHFR-deficiency suggest similar regulatory mechanisms exist in humans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要