Rotational And Translational Dynamics And Their Relation To Hydrogen Bond Lifetimes In An Ionic Liquid By Means Of Nmr Relaxation Time Experiments And Molecular Dynamics Simulation

JOURNAL OF CHEMICAL PHYSICS(2018)

引用 26|浏览12
暂无评分
摘要
We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH center dot center dot center dot O- in the ionic liquid (2-hydroxyethyl) trimethylammonium bis(trifluoromethylsulfonyl) imide [Ch][ NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, O-17-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a singleNMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the delta H-1 proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slowdiffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of hydrogen-bonded ion pairs in these ionic liquids. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要