Synthesis and quantitative characterization of coumarin-caged D-luciferin.

Journal of photochemistry and photobiology. B, Biology(2018)

引用 6|浏览6
暂无评分
摘要
Caged luciferin compounds of firefly luciferins have recently drawn much attention since firefly bioluminescence, in which D-luciferin acts as a substrate, is widely used in noninvasive gene-expression imaging, studies of in vivo cell trafficking, and the detection of enzyme activity. The objectives of this study are the development of new caged luciferins and the quantitative determination of the photophysical parameters of their photo-decomposition. We synthesized 7-(diethylaminocoumarin)-4-(yl)methyl caged D-luciferin (DEACM-caged D-luciferin) and quantitatively characterized its absorption spectrum, bioluminescence, and photoproducts using chiral HPLC chromatography, as a function of light-irradiation time. We observed that 4 min of UV irradiation generated maximum D-luciferin concentrations, which corresponds to 16.2% of the original DEACM-caged-D-luciferin concentration. Moreover, we evaluated not only the rate of photocleavage (0.20/min) from DEACM-caged D-luciferin to luciferin but also the rate of caged-luciferin degradation that did not produce luciferin (0.28/min) and the rate of luciferin decomposition (0.20/min) after exposure to irradiation with a 70 mW/cm2 high-pressure mercury lamp (254-600 nm). The formation rate of L-luciferin via DEACM-caged-D-luciferin photocleavage was smaller by a factor of 1/10 compared with that of D-luciferin. These quantitative measurements and simultaneous evaluations of photocleavage, degradation, and decomposition are the most important and original methodology presented in this study.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要