Decreased abundance of TRESK two-pore domain potassium channels in sensory neurons underlies the pain associated with bone metastasis.

SCIENCE SIGNALING(2018)

引用 27|浏览21
暂无评分
摘要
Cancer-associated pain is debilitating. Understanding the mechanisms that cause it can inform drug development that may improve quality of life in patients. Here, we found that the reduced abundance of potassium channels called TRESK in dorsal root ganglion (DRG) neurons sensitized nociceptive sensory neurons and cancer-associated pain. Overexpressing TRESK in DRG neurons suppressed tumor-induced neuronal hyperexcitability and pain hypersensitivity in bone metastasis model rats, whereas knocking down TRESK increased neuronal hyperexcitability and pain hypersensitivity in normal rats. Mechanistically, tumor-associated production of vascular endothelial growth factor (VEGF) activated the receptor VEGFR2 on DRGs, which increased the abundance of the calcineurin inhibitor DSCR1, which, in turn, decreased calcineurin-mediated activation of the transcription factor NFAT, thereby reducing the transcription of the gene encoding TRESK. Intrathecal application of exogenous calcineurin to tumor-bearing rats rescued TRESK abundance and abrogated both DRG hyperexcitability and pain hypersensitivity, whereas either inhibition or knockdown of calcineurin in normal rats reduced TRESK abundance and increased DRG excitability and pain sensitivity. These findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要