Fluctuation in time-resolved PM2.5 from rural households with solid fuel-associated internal emission sources.

Environmental pollution (Barking, Essex : 1987)(2018)

引用 41|浏览17
暂无评分
摘要
Indoor air contributes significantly to overall exposure, particularly for rural Chinese who often use solid fuels for cooking and/or heating. Unfortunately, overlooked rural indoor air leads to a critical knowledge gap. Simultaneous measurements in the kitchen, living room, and immediately outside of houses using six-channel particle counters were carried out in 18 biomass-burning rural and 3 non-biomass-burning urban households (as a comparison) in winter to characterize dynamic change patterns indoor air pollution and indoor-outdoor relationship. The rural households mainly used wood or crop residues for cooking and heating, while the urban households used pipelined natural gas for cooking and air conditioners for heating. In rural households with significant solid-fuel burning internal sources, the highest concentration was found in the kitchen (101 ± 56 μg/m3), with comparable levels in the living room (99 ± 46 μg/m3) and low levels in outdoor air (91 ± 39 μg/m3). A generally opposite direction of indoor-outdoor exchange was found between the rural and urban households. PM in kitchen air is smaller than that in living rooms and outdoors because solid fuel burning (mainly in rural households) and cooking oil heating (in rural and urban households). Indoor and outdoor PM concentration changed synchronously, with a slight delay in indoor air in urban households but a slight delay in outdoor air in rural households. Cooking, heating, and smoking elevated indoor PM significantly, but different from the cooking activity that produced peaks lasting for about 30 min, emissions from heating created a series of peaks due to frequent disturbance and fuel-feeding and had more significant impacts on the daily average concentration. Distinct indoor-outdoor relationships and dynamic change patterns between the two household categories w/o strong internal biomass burning sources imply that totally different model schemes are needed to quantitatively address indoor air pollution and inhalation exposure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要