Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater.

Ecotoxicology and environmental safety(2018)

引用 23|浏览7
暂无评分
摘要
It is necessary to study the mechanism of resistance to heavy metals in microbiological processes. In this study, Ochrobactrum MT180101 was used as the microbial source of an membrane bioreactor to investigate its degradation efficiency for electroplating wastewater and the copper-resistant mechanism. Meanwhile, excitation emission matrix-parallel factor, scanning electron microscope, atomic force microscope, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and proteome analyses were applied to explain the comprehensive mechanism of the Ochrobactrum MT180101 resisting heavy metal toxicity. The results indicated that the Ochrobactrum MT180101 resisted heavy metal toxicity with the following pathways: i) binding metal cations on cell wall surfaces, ii) generating microbial products such as protein to chelate and stabilize the metal cations, iii) bio-transporting heavy metals from the intramembrane to the outer membrane by means of intracellular transport, and iv) reducing heavy metals through enzyme-mediated biotransformation. The results ensure that Ochrobactrum MT180101 was a copper-resistant bacterium that can be used in the pretreatment or deep treatment of electroplating wastewater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要