Recursive paleohexaploidization shapes the durian genome.

PLANT PHYSIOLOGY(2019)

引用 29|浏览20
暂无评分
摘要
The durian (Durio zibethinus) genome has recently become available, and analysis of this genome reveals two paleopolyploidization events previously inferred as shared with cotton (Gossypium spp.). Here, we reanalyzed the durian genome in comparison with other well-characterized genomes. We found that durian and cotton were actually affected by different polyploidization events: hexaploidization in durian; similar to 19-21 million years ago (mya) and decaploidization in cotton; similar to 13-14 mya. Previous interpretations of shared polyploidization events may have resulted from the elevated evolutionary rates in cotton genes due to the decaploidization and insufficient consideration of the complexity of plant genomes. The decaploidization elevated evolutionary rates of cotton genes by; similar to 64% compared to durian and explained a previous; similar to 4-fold over dating of the event. In contrast, the hexaploidization in durian did not prominently elevate gene evolutionary rates, likely due to its long generation time. Moreover, divergent evolutionary rates probably explain 98.4% of reconstructed phylogenetic trees of homologous genes being incongruent with expected topology. The findings provide further insight into the roles played by polypoidization in the evolution of genomes and genes, and they suggest revisiting existing reconstructed phylogenetic trees.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要