HIF-1α-induced miR-23a∼27a∼24 cluster promotes colorectal cancer progression via reprogramming metabolism.

Cancer Letters(2019)

引用 43|浏览28
暂无评分
摘要
Tumor cells switch metabolic profile from oxidative phosphorylation to glycolysis in a hypoxic environment for survival and proliferation. The mechanisms governing this metabolic switch, however, remain incompletely understood. Here, we show that three miRNAs in the miR-23a∼27a∼24 cluster, miR-23a, miR-27a and miR-24, are the most upregulated miRNA cluster in colorectal cancer (CRC) under hypoxia. Gain- and loss-of-function assays, a human glucose metabolism array and gene pathway analyses confirm that HIF-1α-induced miR-23a∼27a∼24 cluster collectively regulate glucose metabolic network through regulating various metabolic pathways and targeting multiple tricarboxylic acid cycle (TCA)-related genes. In specific, miR-24/VHL/HIF-1α in CRC form a double-negative feedback loop, which in turn, promotes the cellular transition to the ‘high HIF-1α/miR-24 and low VHL’ state and facilitates cell survival. Our findings reveal that the miR-23a∼27a∼24 cluster is critical regulator switching CRC metabolism from oxidative phosphorylation to glycolysis, and controlling their expression can suppress colorectal cancer progression.
更多
查看译文
关键词
miRNA,Feedback,Metabolism reprogramming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要