Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array.

OPTICS EXPRESS(2018)

引用 27|浏览6
暂无评分
摘要
To date, near-perfect light absorbers at visible frequency are still severely impeded by the complicated architecture design and time-consuming costly fabrication procedures. In this work, we design and fabricate a new cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel (Ni) with a two-dimension cylinder array. The simulated and measured average absorption at normal incidence are beyond 94% and 92% over the entire visible wavelength band from 400 nm to 700 nm, respectively. Additionally, the absorbance property was well retained, and the absorptivity still remained beyond 70% when the incident angles vary from 0 degrees to 60 degrees. Our theoretically and experimentally results indicate that the broadband wide-angular absorption can be ascribed to the Rayleigh-Wood anomaly combined with slot modes induced by excited surface plasmon polaritons. Moreover, the low-cost double-beam interference lithography followed by soft nano-imprinting and electroforming technology, which are directly compatible with the cost-effective and high volume manufacturing requirements, are employed to fabricate the proposed absorber. The proposed approach is simple and inexpensive and the obtained ultrathin homogenous meta-surface nickel absorber can be rolled or folded on the surface of various optoelectronics, such as solar system and radiation thermal devices. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要