谷歌浏览器插件
订阅小程序
在清言上使用

MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life.

NeuroImage(2018)

引用 49|浏览13
暂无评分
摘要
Quantitative assessments of normative brain development using MRI are of critical importance to gain insights into healthy neurodevelopment. However, quantitative MR imaging poses significant technical challenges and requires prohibitively long acquisition times, making it impractical for pediatric imaging. This is particularly relevant for healthy subjects, where imaging under sedation is not clinically indicated. MR Fingerprinting (MRF), a novel MR imaging framework, provides rapid, efficient, and simultaneous quantification of multiple tissue properties. In this study, a 2D MR Fingerprinting method was developed that achieves a spatial resolution of 1 × 1 × 3 mm3 with rapid and simultaneous quantification of T1, T2 and myelin water fraction (MWF). Phantom experiments demonstrated that accurate measurements of T1 and T2 relaxation times were achieved over a wide range of T1 and T2 values. MRF images were acquired cross-sectionally from 28 typically developing children, 0 to five years old, who were enrolled in the UNC/UMN Baby Connectome Project. Differences associated with age of R1 (=1/T1), R2 (=1/T2) and MWF were obtained from several predefined white matter regions. Both R1 and R2 exhibit a marked increase until ∼20 months of age, followed by a slower increase for all WM regions. In contrast, the MWF remains at a negligible level until ∼6 months of age for all predefined ROIs and gradually increases afterwards. Depending on the brain region, rapid increases are observed between 6 and 12 months to 6-18 months, followed by a slower pace of increase in MWF. Neither relaxivities nor MWF were significantly different between the left and right hemispheres. However, regional differences in age-related R1 and MWF measures were observed across different white matter regions. In conclusion, our results demonstrate that the MRF technique holds great potential for multi-parametric assessments of normative brain development in early childhood.
更多
查看译文
关键词
Magnetic resonance fingerprinting,Relaxometry,Myelin water fraction imaging,Brain development
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要