Protein-Induced Pluripotent Stem Cells Ameliorate Cognitive Dysfunction and Reduce Aβ Deposition in a Mouse Model of Alzheimer's Disease.

STEM CELLS TRANSLATIONAL MEDICINE(2017)

引用 54|浏览32
暂无评分
摘要
Transplantation of stem cells into the brain attenuates functional deficits in the central nervous system via cell replacement, the release of specific neurotransmitters, and the production of neurotrophic factors. To identify patient-specific and safe stem cells for treating Alzheimer's disease (AD), we generated induced pluripotent stem cells (iPSCs) derived from mouse skin fibroblasts by treating protein extracts of embryonic stem cells. These reprogrammed cells were pluripotent but nontumorigenic. Here, we report that protein-iPSCs differentiated into glial cells and decreased plaque depositions in the 5XFAD transgenic AD mouse model. We also found that transplanted protein-iPSCs mitigated the cognitive dysfunction observed in these mice. Proteomic analysis revealed that oligodendrocyte-related genes were upregulated in brains injected with protein-iPSCs, providing new insights into the potential function of protein-iPSCs. Taken together, our data indicate that protein-iPSCs might be a promising therapeutic approach for AD.
更多
查看译文
关键词
Alzheimer's disease,Protein-iPSC,5XFAD mice,Proteomic analysis,Oligodendrocyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要