谷歌浏览器插件
订阅小程序
在清言上使用

Multi-scale Analysis of the Effect of Nano-Filler Particle Diameter on the Physical Properties of CAD/CAM Composite Resin Blocks

Computer Methods in Biomechanics and Biomedical Engineering(2017)

引用 20|浏览7
暂无评分
摘要
The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3x3x3mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r=-0.949, 0.943, -0.951, 0.976, p<0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.
更多
查看译文
关键词
Composite resins,CAD,CAM,multi-scale analysis,compressive strength,maximum principal strain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要