Use of Oxygen Therapies in Wound Healing.

Journal of wound care(2017)

引用 65|浏览33
暂无评分
摘要
Journal of Wound CareVol. 26, No. Sup5 Use of Oxygen Therapies in Wound HealingFocus on Topical and Hyperbaric Oxygen TreatmentFinn Gottrup, Joachim Dissemond, Carol Baines, Robert Frykberg, Peter Østrup Jensen, Jacek Kot, Knut Kröger, Pasquale LongobardiFinn GottrupSearch for more papers by this author, Joachim DissemondSearch for more papers by this author, Carol BainesSearch for more papers by this author, Robert FrykbergSearch for more papers by this author, Peter Østrup JensenSearch for more papers by this author, Jacek KotSearch for more papers by this author, Knut KrögerSearch for more papers by this author, Pasquale LongobardiSearch for more papers by this authorFinn Gottrup; Joachim Dissemond; Carol Baines; Robert Frykberg; Peter Østrup Jensen; Jacek Kot; Knut Kröger; Pasquale LongobardiPublished Online:5 May 2017https://doi.org/10.12968/jowc.2017.26.Sup5.S1AboutSectionsView articleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareShare onFacebookTwitterLinked InEmail View article References 1 Gottrup F. Oxygen in wound healing and infection. World J Surg 2004; 28(3):312–315. https://doi.org/https://doi.org/10.1007/s00268-003-7398-5 Crossref, Medline, Google Scholar2 Niinikoski J, Gottrup F, Hunt T. The role of oxygen in wound repair. In: Janssen HRooman RRobertson JIS (eds). Wound healing. Oxford: Blackwell Scientific publications; 1991. Google Scholar3 Dissemond J, Kroger K, Storck M, et al.. Topical oxygen wound therapies for chronic wounds: a review. J Wound Care 2015; 24(2):53–63. https://doi.org/https://doi.org/10.12968/jowc.2015.24.2.53 Link, Google Scholar4 Dale JJ, Callam MJ, Ruckley CV, et al.. Chronic ulcers of the leg: a study of prevalence in a Scottish community. Health Bull (Edinb) 1983 41(6):310–314. Medline, Google Scholar5 Gottrup F. A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg 2004; 187(5 5A):S38–S43. https://doi.org/https://doi.org/10.1016/S0002-9610(03)00303-9 Crossref, Google Scholar6 Hjort A, Gottrup F. Cost of wound treatment to increase significantly in Denmark over the next dec-ade. J Wound Care. 2010; 19(5):173–184. https://doi.org/https://doi.org/10.12968/jowc.2010.19.5.48046 Link, Google Scholar7 Posnett J, Gottrup F, Lundgren H, Saal G. The resource impact of wounds on health-care providers in Europe. J Wound Care 2009; 18(4):154–161. https://doi.org/https://doi.org/10.12968/jowc.2009.18.4.41607 Link, Google Scholar8 Gottrup F, Apelqvist J, Price P, et al.. Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care 2010; 19(6):237–268. https://doi.org/https://doi.org/10.12968/jowc.2010.19.6.48471 Link, Google Scholar9 Burmølle M, Thomsen TR, et al.. Biofilms in chronic infections – a matter of opportunity – monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 2010; 59(3):324–336. https://doi.org/https://doi.org/10.1111/j.1574-695X.2010.00714.x Crossref, Medline, Google Scholar10 Lee BY. The wound management manual. McGraw-Hill, 2005. Google Scholar11 Polit DF, Beck CT. Nursing research: generating and assessing evidence for nursing practice. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012. Google Scholar12 Mossialos E, Morel CM, Edwards S, et al.. Policies and incentives for promoting innovation in antibiotic research. World Health Organization, 2010. Google Scholar13 Leaper DJ. Defining infection. J Wound Care 1998; 7(8):373. https://doi.org/https://doi.org/10.12968/jowc.1998.7.8.373 Link, Google Scholar14 Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen 2009; 17(1):1–18. https://doi.org/https://doi.org/10.1111/j.1524-475X.2008.00436.x Crossref, Medline, Google Scholar15 Gottrup F. Physiology and measurement of tissue perfusion. Ann Chir Gynaecol 1994; 83(3):183–189. Medline, Google Scholar16 Jesaitis AJ, Franklin MJ, Berglund D, et al.. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 2003; 171(8):4329–4339. PMID: 14530358 Crossref, Google Scholar17 Proctor RA. Endotoxin in vitro interactions with human neutrophils: depression of chemilumines-cence, oxygen consumption, superoxide production, and killing. Infect Immun 1979; 25(3):912–21. Medline, Google Scholar18 Kolpen M, Hansen CR, Bjarnsholt T, et al.. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 2010; 65(1):57–62. https://doi.org/https://doi.org/10.1136/thx.2009.114512 Crossref, Medline, Google Scholar19 Campbell EL, Bruyninckx WJ, Kelly CJ, et al.. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 2014; 40(1):66–77. https://doi.org/https://doi.org/10.1016/j.immuni.2013.11.020 Crossref, Medline, Google Scholar20 Alhede M, Bjarnsholt T, Jensen PO, et al.. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 2009; 155(11):3500–3508. https://doi.org/https://doi.org/10.1099/mic.0.031443-0 Crossref, Medline, Google Scholar21 Fazli M, Bjarnsholt T, Kirketerp-Moller K, et al.. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen 2011; 19(3):387–391. https://doi.org/https://doi.org/10.1111/j.1524-475X.2011.00681.x Crossref, Medline, Google Scholar22 Trostrup H, Thomsen K, Christophersen LJ, et al.. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen 2013; 21(2):292–299. https://doi.org/https://doi.org/10.1111/wrr.12016 Crossref, Medline, Google Scholar23 James GA, Ge Zhao A, Usui M, et al.. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair Regen 2016; 24(2):373-83. https://doi.org/https://doi.org/10.1111/wrr.12401 Crossref, Medline, Google Scholar24 Kolpen M, Bjarnsholt T, Moser C, Hansen CR, Rickelt LF, Kühl M et al. Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin Exp Immunol 2014; 177(1):310–319. https://doi.org/https://doi.org/10.1111/cei.12318 Crossref, Medline, Google Scholar25 Cowley ES, Kopf SH, LaRiviere A, et al.. Pediatric Cystic Fibrosis Sputum Can Be Chemically Dynamic, Anoxic, and Extremely Reduced Due to Hydrogen Sulfide Formation. MBio 2015; 6(4):e00767-15. https://doi.org/https://doi.org/10.1128/mBio.00767-15 Crossref, Medline, Google Scholar26 Xu Y, Maltesen RG, Larsen LH, et al.. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 2016; 16(1):80. https://doi.org/https://doi.org/10.1186/s12866-016-0695-6 Crossref, Medline, Google Scholar27 Trampuz A, Hanssen AD, Osmon DR, et al.. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. Am J Med 2004; 117(8):556–562. https://doi.org/https://doi.org/10.1016/j.amjmed.2004.06.022 Crossref, Medline, Google Scholar28 Dowd SE, Sun Y, Secor PR, et al.. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008; 8(1):43. https://doi.org/https://doi.org/10.1186/1471-2180-8-43 Crossref, Medline, Google Scholar29 Oates A, Bowling FL, Boulton AJ, et al.. The visualization of biofilms in chronic diabetic foot wounds using routine diagnostic microscopy methods. J Diabetes Res 2014; 2014:153586. https://doi.org/https://doi.org/10.1155/2014/153586 Crossref, Medline, Google Scholar30 Trengove NJ, Langton SR, Stacey MC. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair Regen 1996; 4(2):234–239. https://doi.org/https://doi.org/10.1046/j.1524-475X.1996.40211.x Crossref, Medline, Google Scholar31 Weingarten MS, Samuels JA, Neidrauer M, et al.. Diffuse near-infrared spectroscopy prediction of healing in diabetic foot ulcers: a human study and cost analysis. Wound Repair Regen 2012; 20(6):911–917. https://doi.org/https://doi.org/10.1111/j.1524-475X.2012.00843.x Crossref, Medline, Google Scholar32 Bowen R, Treadwell G, Goodwin M. Correlation of near infrared spectroscopy measurements of tissue oxygen saturation with transcutaneous pO2 in patients with chronic wounds. SM Vascular. Medicine 2016; 1(1): Epub 2016 Oct 1. Google Scholar33 Godavarty A. A near-IR optical scanner to detect wound healing. SPIE News-room2015. https://tinyurl.com/kzg77wr (accessed 24 April 2017). Google Scholar34 Striebel HW, Kretz FJ. Advantages and limitations of pulse oximetry. In: Reinhart KEyrich K (eds). Clinical aspects of O2 transport and tissue oxygenation. Springer Berlin Heidelberg; 1989. Crossref, Google Scholar35 Gottrup F, Niinikoski J, Hunt T. Measurement of tissue oxygen tension in wound repair. In: Janssen HRooman RRobertson JIS (eds). Wound healing. Oxford: Blackwell Scientific publications; 1991. Google Scholar36 Katsamouris A, Brewster DC, Megerman J, et al.. Transcutaneous oxygen tension in selection of amputation level. Am J Surg 1984; 147(4):510–517. Crossref, Medline, Google Scholar37 Fife CE, Buyukcakir C, Otto GH, et al.. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1144 patients. Wound Repair Regen 2002; 10(4):198–207. https://doi.org/https://doi.org/10.1046/j.1524-475X.2002.10402.x Crossref, Medline, Google Scholar38 Feldmeier JJ, Hopf HW, Warriner RA 3rd, et al. UHMS position statement: topical oxygen for chronic wounds. Undersea Hyperb Med 2005; 32(3):157–168. Medline, Google Scholar39 Fife CE, Buyukcakir C, Otto G, et al.. Factors influencing the outcome of lower-extremity diabetic ulcers treated with hyperbaric oxygen therapy. Wound Repair Regen 2007; 15(3):322–331. https://doi.org/https://doi.org/10.1111/j.1524-475X.2007.00234.x Crossref, Medline, Google Scholar40 Fife CE, Hopf H. Discussion. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg 2011; 127 Suppl 1:142S–143S. https://doi.org/https://doi.org/10.1097/PRS.0b013e3181fb5443 Crossref, Medline, Google Scholar41 Fischer B. Topical hyperbaric oxygen treatment of pressure sores and skin ulcers. Lancet 1969; 294(7617):405–409. https://doi.org/https://doi.org/10.1016/S0140-6736(69)90113-5 Crossref, Google Scholar42 Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev 2012; 4(4):CD004123. Google Scholar43 Hopf HW, Gibson JJ, Angeles AP, et al.. Hyperoxia and angiogenesis. Wound Repair Regen 2005; 13(6):558–564. https://doi.org/https://doi.org/10.1111/j.1524-475X.2005.00078.x Crossref, Medline, Google Scholar44 Hunt TK, Linsey M, Crislis G, et al.. The effect of differing ambient oxygen tensions on wound infection. Ann Surg 1975; 181(1):35–39. https://doi.org/https://doi.org/10.1097/00000658-197501000-00009 Crossref, Medline, Google Scholar45 Gordillo GM, Roy S, Khanna S, Schlanger R, Khandelwal S, Phillips G et al.. Topical oxygen therapy induces vascular endothelial growth factor expression and improves closure of clinically presented chronic wounds. Clin Exp Pharmacol Physiol 2008 Aug;35(8):957–964. https://doi.org/https://doi.org/10.1111/j.1440-1681.2008.04934.x Crossref, Medline, Google Scholar46 Fries RB, Wallace WA, Roy S, et al.. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005; 579(1-2):172–181. https://doi.org/https://doi.org/10.1016/j.mrfmmm.2005.02.023 Crossref, Google Scholar47 Gordillo GM, Sen CK. Revisiting the essential role of oxygen in wound healing. Am J Surg 2003; 186(3):259–263. https://doi.org/https://doi.org/10.1016/S0002-9610(03)00211-3 Crossref, Medline, Google Scholar48 Tawfick W, Sultan S. Does topical wound oxygen (TWO2) offer an improved outcome over conven-tional compression dressings (CCD) in the management of refractory venous ulcers (RVU)? A parallel obser-vational comparative study. Eur J Vasc Endovasc Surg 2009; 38(1):125–132. https://doi.org/https://doi.org/10.1016/j.ejvs.2009.03.027 Crossref, Medline, Google Scholar49 Sibbald RG, Woo KY, Queen D. Wound bed preparation and oxygen balance? a new component? Int Wound J 2007; 4(s3 Suppl 3):9–17. https://doi.org/https://doi.org/10.1111/j.1742-481X.2007.00388.x Crossref, Medline, Google Scholar50 Leslie CA, Sapico FL, Ginunas VJ, Adkins RH. Randomized controlled trial of topical hyperbaric oxygen for treatment of diabetic foot ulcers. Diabetes Care 1988; 11(2):111–115. https://doi.org/https://doi.org/10.2337/diacare.11.2.111 Crossref, Medline, Google Scholar51 Gordillo GM, Schlanger R, Wallace WA, et al.. Protocols for topical and systemic oxygen treatments in wound healing. Methods Enzymol 2004; 381:575–585. https://doi.org/https://doi.org/10.1016/S0076-6879(04)81037-1 Crossref, Medline, Google Scholar52 Gordillo GM, Hunt TK, Sen CK. Significance of oxygen therapeutics. Wound Repair Regen 2003; 11(5):393. PMID: 12950645. Crossref, Medline, Google Scholar53 Gordillo GM, Sen CK. Evidence-based recommendations for the use of topical oxygen therapy in the treatment of lower extremity wounds. Int J Low Extrem Wounds 2009; 8(2):105–111. https://doi.org/https://doi.org/10.1177/1534734609335149 Crossref, Medline, Google Scholar54 Kalliainen LK, Gordillo GM, Schlanger R, Sen CK. Topical oxygen as an adjunct to wound healing: a clinical case series. Pathophysiology 2003; 9(2):81–87. https://doi.org/https://doi.org/10.1016/S0928-4680(02)00079-2 Crossref, Medline, Google Scholar55 Niederauer MQ, Michalek JE, Armstrong DG. Interim results for a prospective, randomized, double-blind multicenter study comparing continuous diffusion of oxygen therapy to standard moist wound therapy in the treatment of diabetic foot ulcers. Wound Medicine 2015; 8:19–23. doi:https://doi.org/10.1016/j.wndm.2015.03.005 Crossref, Google Scholar56 Niederauer MQ, Michalek JE, Armstrong DG. Prospective, randomized, double-blind multicenter study comparing continuous diffusion of oxygen therapy to sham therapy in the treatment of diabetic foot ulcers. J Diabetes Sci Tech 2017; 1–7. https://doi.org/https://doi.org/10.1177/1932296817695574 Google Scholar57 Kemp DG, Hermans, MH. An evaluation of the efficacy of transdermal continuous oxygen therapy in patients with recalcitrant diabetic foot ulcer. Journal of Diabetic Foot Complications. 2011; 3(1):6–12. Google Scholar58 Hirsh F, Berlin SJ, Holtz A. Transdermal oxygen delivery to diabetic wounds: a report of 6 cases. Adv Skin Wound Care 2009; 22(1):20–24. https://doi.org/https://doi.org/10.1097/01.ASW.0000343722.22943.40 Crossref, Medline, Google Scholar59 Ogenix Corporation (2014). Transdermal Continuous Oxygen Therapy for Diabetic Foot Ulcers. https://tinyurl.com/mv5j42c (accessed 24 April 2017). Google Scholar60 Driver VR, Yao M, Kantarci A, Gu G, Park N, Hasturk H. A prospective, randomized clinical study evaluating the effect of transdermal continuous oxygen therapy on biological processes and foot ulcer healing in persons with diabetes mellitus. Ostomy Wound Manage 2013; 59(11):19–26. PMID:24201169 Medline, Google Scholar61 Mani R. Topical oxygen therapy for chronic wounds: a report on the potential of NATROXTM a new device for delivering enriched oxygen to chronic wounds. Journal of Wound Technology 2010; (9):28–30. Google Scholar62 Yu J, Lu S, McLaren AM, Perry JA, Cross KM. Topical oxygen therapy results in complete wound healing in diabetic foot ulcers. Wound Repair Regen 2016; 24(6):1066–1072. https://doi.org/https://doi.org/10.1111/wrr.12490 Crossref, Medline, Google Scholar63 Ladizinsky D, Roe D. New insights into oxygen therapy for wound healing. Wounds 2010; 22(12):294–300. Medline, Google Scholar64 Tawfick WA, Sultan S. Technical and clinical outcome of topical wound oxygen in comparison to conventional compression dressings in the management of refractory nonhealing venous ulcers. Vasc Endovascular Surg 2013; 47(1):30–37. https://doi.org/https://doi.org/10.1177/1538574412467684 Crossref, Medline, Google Scholar65 Blackman E, Moore C, Hyatt J, Railton R, Frye C. Topical wound oxygen therapy in the treatment of severe diabetic foot ulcers: a prospective controlled study. Ostomy Wound Manage 2010; 56(6):24–31. Medline, Google Scholar66 Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle). 2015 Sep 1;4(9):560–582. https://doi.org/https://doi.org/10.1089/wound.2015.0635 Crossref, Medline, Google Scholar67 Ivins N, Simmonds W, Turner A, Harding K. The use of an oxygenating hydrogel dressing in VLU. Wounds UK. 2007; 3(1):77–81. Google Scholar68 Davis P, Wood L, Wood Z, et al.. Clinical experience with a glucose oxidase-containing dressing on recalcitrant wounds. J Wound Care 2009; 18(3):114, 6-21. https://doi.org/https://doi.org/10.12968/jowc.2009.18.3.39812 Link, Google Scholar69 Wood L, Wood Z, Davis P, Wilkins J. Clinical experience with an antimicrobial hydrogel dressing on recalcitrant wounds. J Wound Care 2010; 19(7):287–293. PMID: 20616771 Link, Google Scholar70 Lo JF, Brennan M, Merchant Z, et al.. Microfluidic wound bandage: localized oxygen modulation of collagen maturation. Wound Repair Regen 2013; 21(2):226–234. https://doi.org/https://doi.org/10.1111/wrr.12021 Crossref, Medline, Google Scholar71 Lairet KF, Baer D, Leas ML, et al.. Evaluation of an oxygen-diffusion dressing for accelerated healing of donor-site wounds [eng.]. J Burn Care Res 2014;35(3):214–218. Epub 2013 Jul 24. https://doi.org/https://doi.org/10.1097/BCR.0b013e31829b3338 Crossref, Medline, Google Scholar72 Thorn RM, Greenman J, Austin AS. An in vitro study of antimicrobial activity and efficacy of iodine-generating hydrogel dressings. J Wound Care 2006; 15(7):305–310. https://doi.org/https://doi.org/10.12968/jowc.2006.15.7.26929 Link, Google Scholar73 Thorn RM, Austin AJ, Greenman J, et al.. In vitro comparison of antimicrobial activity of iodine and silver dressings against biofilms. J Wound Care 2009; 18(8):343–346. https://doi.org/https://doi.org/10.12968/jowc.2009.18.8.43635 Link, Google Scholar74 Scholander PF. Oxygen transport through hemoglobin solutions. Science 1960; 131(3400):585–590. https://doi.org/https://doi.org/10.1126/science.131.3400.585 Crossref, Medline, Google Scholar75 Petri M, Stoffels I, Jose J, et al.. Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study. J Wound Care. 2016; 25(2):87–91. https://doi.org/https://doi.org/10.12968/jowc.2016.25.2.87 Link, Google Scholar76 Arenbergerova M, Engels P, Gkalpakiotis S, et al.. [Topical hemoglobin promotes wound healing of patients with venous leg ulcers]. [Article in German] 2013; 64(3):180–186. PubMed PMID: 23354657. Google Scholar77 Hunt SD, Haycocks S, McCardle J, Guttormsen K. Evaluating the effect of a haemoglobin spray on size reduction in chronic DFUs: clinical outcomes at 12 weeks. Br J Nurs. 2016; 25(12):S59–64. https://doi.org/https://doi.org/10.12968/bjon.2016.25.12.S59 Link, Google Scholar78 Tickle J. A topical haemoglobin spray for oxygenating pressure ulcers: a pilot study. Br J Community Nurs 2015; Suppl Wound Care(S12:S4–S8). https://doi.org/https://doi.org/10.12968/bjcn.2015.20.Sup3.S12 Google Scholar79 Hunt SD, Elg F. Clinical effectiveness of hemoglobin spray (Granulox(®)) as adjunctive therapy in the treatment of chronic diabetic foot ulcers. Diabetic Foot & Ankle. 2016; 7:33101. doi: https://doi.org/10.3402/dfa.v7.33101 Crossref, Medline, Google Scholar80 Healthcare Improvement Scotland. (2016) Innovative medical technology overview: Granulox® haemoglobin spray 006/2016 https://tinyurl.com/k8y3lxa (accessed 24 April 2017). Google Scholar81 Strohal R, Kröger VG, Kurz P, et al.. Expert consensus to practical aspects of wound therapy with hemoglobin spray. Wundmanagement 2016; 5: 276–284. Google Scholar82 Chadwick PM, McCardle J, Luxmi M, et al.. Appropriate use of topical haemoglobin in chronic wound management: consensus recommendations. Wounds UK 2015; EWMA Special: 30–35. Google Scholar83 Kammerlander G, Assadian O, Eberlein T, et al.. A clinical evalu-ation of the efficacy and safety of singlet oxygen in cleansing and disinfecting stagnating wounds. J Wound Care 2011; 20(4):149–154 https://doi.org/https://doi.org/10.12968/jowc.2011.20.4.149 Link, Google Scholar84 Wang L, Bassiri M, Najafi R, et al.. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds 2007; 6:e5. Medline, Google Scholar85 Sakarya S, Gunay N, Karakulak M, et al.. Hypochlorous Acid: an ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds 2014; 26(12):342–350. PMID: 25785777. Medline, Google Scholar86 Piaggesi A, Goretti C, Mazzurco S, et al.. A randomized controlled trial to examine the efficacy and safety of a new super-oxidized solution for the management of wide postsurgical lesions of the diabetic foot. Int J Low Extrem Wounds 2010; 9(1):10–15. https://doi.org/https://doi.org/10.1177/1534734610361945 Crossref, Medline, Google Scholar87 Eftekharizadeh F, Dehnavieh R, Noori Hekmat S, Mehrolhassani MH. Health technology assessment on super oxidized water for treatment of chronic wounds. Med J Islam Repub Iran 2016; 30:384. Medline, Google Scholar88 Niinikoski J. Physiologic effects of hyperbaric oxygen on wound healing process. In: Mathieu D (ed). Handbook on Hyperbaric Medicine. Springer, 2006. Crossref, Google Scholar89 Niinikoski J, Hunt TK. Oxygen and healing wounds: tissue-bone repair enhancement. In: Oriani GMarroni AWattel F, (eds). Handbook on Hyperbaric Medicine. Springer Milan, 1996. Crossref, Google Scholar90 Sheffield PJ, Smith AP. Physiological and pharmacological basis of hyperbaric oxygen therapy. In: Bakker DJCramer FS (eds). Hyperbaric surgery. Best Publishing Company, 2002. Google Scholar91 Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol 2009; 106(3):988–995. https://doi.org/https://doi.org/10.1152/japplphysiol.91004.2008 Crossref, Medline, Google Scholar92 Thackham JA, McElwain DL, Long RJ. The use of hyperbaric oxygen therapy to treat chronic wounds. Wound Repair Regen 2008; 16(3):321–330. https://doi.org/https://doi.org/10.1111/j.1524-475X.2008.00372.x Crossref, Medline, Google Scholar93 Korhonen K. Hyperbaric oxygen therapy in acute necrotizing infections with a special reference to the effects on tissue gas tensions. Ann Chir Gynaecol Suppl 2000; (214):7–36. Medline, Google Scholar94 Zanon V, Rossi L, Castellani E, et al.. Oxybiotest project: microorganisms under pressure. Hyperbaric oxygen (HBO) and simple pressure interaction on selected bacteria. Medical Gas Research 2012; 2(1):24. https://doi.org/https://doi.org/10.1186/2045-9912-2-24 Google Scholar95 Cianci P, Hunt TK. Adjunctive HBOT in the treatment of the diabetic foot wound. In: Bowker JHPfeifer MA, (eds). The Diabetic Foot. CV Mosby, 2001. Google Scholar96 Turhan V, Sacar S, Uzun G, Sacar M, Yildiz S, Ceran N et al.. Hyperbaric oxygen as adjunctive therapy in experimental mediastinitis. J Surg Res 2009; 155(1):111–115. https://doi.org/https://doi.org/10.1016/j.jss.2008.08.031 Crossref, Medline, Google Scholar97 Lima FL, Joazeiro PP, Lancellotti M, et al.. Effects of hyperbaric oxygen on Pseudomonas aeruginosa susceptibility to imipenem and macrophages. Future Microbiol 2015; 10(2):179–189. https://doi.org/https://doi.org/10.2217/fmb.14.111 Crossref, Medline, Google Scholar98 Kolpen M, Mousavi N, Sams T, et al.. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. Int J Antimicrob Agents 2016; 47(2):163–167. https://doi.org/https://doi.org/10.1016/j.ijantimicag.2015.12.005 Crossref, Medline, Google Scholar99 Cimşit M, Uzun G, Yıldız S. Hyperbaric oxygen therapy as an anti-infective agent. Expert Rev Anti Infect Ther 2009; 7(8):1015–1026. https://doi.org/https://doi.org/10.1586/eri.09.76 Crossref, Medline, Google Scholar100 Rinaldi B, Cuzzocrea S, Donniacuo M, et al.. Hyperbaric oxygen therapy reduces the toll-like receptor signaling pathway in multiple organ failures. Intensive Care Med 2011; 37(7):1110–1119. https://doi.org/https://doi.org/10.1007/s00134-011-2241-1 Crossref, Medline, Google Scholar101 Kendall AC, Whatmore JL, Harries LW, et al.. Changes in inflammatory gene expression induced by hyperbaric oxygen treatment in human endothelial cells under chronic wound conditions Exp Cell Res 2012; 318(3):207–216. https://doi.org/https://doi.org/10.1016/j.yexcr.2011.10.014 Crossref, Medline, Google Scholar102 Thom SR, Bhopale VM, Velazquez OC, et al.. Stem cell mobilization by hyperbaric oxygen. AJP: Heart and Circulatory Physiology 2005; 290(4):H1378–H1386. https://doi.org/https://doi.org/10.1152/ajpheart.00888.2005 Crossref, Medline, Google Scholar103 Kendall AC, Whatmore JL, Harries LW, et al. Different oxygen treatment pressures alter inflammatory gene expression in human endothelial cells. Undersea Hyperb Med 2013; 40(2):115–123. Medline, Google Scholar104 Mathieu D, Neviere R, Wattel F. Transcutaneous oxymetry in hyperbaric medicine. In: Oriani GMarroni AWattel F (eds). Handbook on hyperbaric medicine. Springer-Verlag, 1996. Google Scholar105 Mathieu D, Linke JC, Wattel F. Non-healing wounds. In: Mathieu D, (ed) Handbook on Hyperbaric Medicine. Springer, 2006. Crossref, Google Scholar106 Löndahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care 2010; 33(5):998–1003. https://doi.org/https://doi.org/10.2337/dc09-1754 Crossref, Medline, Google Scholar107 Elraiyah T, Tsapas A, Prutsky G, et al.. A systematic review and meta-analysis of adjunctive therapies in diabetic foot ulcers. J Vasc Surg. 2016; 63(2 Suppl):46S–58S e1-2. https://doi.org/https://doi.org/10.1016/j.jvs.2015.10.007 Crossref, Medline, Google Scholar108 Kranke P, Bennett MH, Martyn-St James M, et al.. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev 2015; (6):CD004123. Medline, Google Scholar109 Akcali G, Uzun G, Yapici AK, Yildiz S. Sequential Use of Hyperbaric Oxygen, Synthetic Skin Substitute and Skin Grafting in the Treatment of a Refractory Vasculitic Ulcer. Journal of the American College of Clinical Wound Specialists 2013 Dec;5(3):58–60. https://doi.org/https://doi.org/10.1016/j.jccw.2015.02.002 Crossref, Medline, Google Scholar110 Liu R, Li L, Yang M, et al.. Systematic review of the effectiveness of hyperbaric oxygenation therapy in the management of chronic diabetic foot ulcers. Mayo Clin Proc 2013; 88(2):166–175. https://doi.org/https://doi.org/10.1016/j.mayocp.2012.10.021 Crossref, Medline, Google Scholar111 Jain KK. Indications, contraindications, and complications of HBO therapy. In: Jain KK, (ed). Textbook of hyperbaric medicine. (4th edn) Hogrefe and Herbre, 2004. Google Scholar112 Hadanny A, Meir O, Bechor Y, et al.. The safety of hyperbaric oxygen treatment–retrospective analysis in 2,334 patients. Undersea Hyperb Med 2016; 43(2):113–122. PMID: 27265988 Medline, Google Scholar113 Mathieu D, Marroni A, Kot J. Tenth European Consensus Conference on Hyperbaric Medicine: preliminary report. Diving Hyperb Med 2016; 46(2):122–123. PMID: 27335005. Medline, Google Scholar114 Second European consensus document on chronic critical leg ischemia. Circulation 1991; 84(4 Suppl):IV1–IV26. Medline, Google Scholar115 Kelly CA, Maden M. How do respiratory patients perceive oxygen therapy? A critical interpretative synthesis of the literature. Chron Respir Dis 2014; 11(4):209–228. https://doi.org/https://doi.org/10.1177/1479972314551561 Crossref, Medline, Google Scholar116 Soon SL, Chen SC. What are Wound Care Outcomes? Wounds 2004; 16(5). Google Scholar117 Blome C, Baade K, Sebastian Debus E, et al.. The Wound-QoL: A short questionnaire measuring quality of life in patients with chronic wounds based on three established disease-specific instruments. Wound Repair Regen 2014; 22(4):504–514. https://doi.org/https://doi.org/10.1111/wrr.12193 Crossref, Medline, Google Scholar118 Hammarlund C, Sundberg T. Hyperbaric oxygen reduced size of chronic leg ulcers: a randomized double-blind study. Plast Reconstr Surg 1994; 93(4):829–833. https://doi.org/https://doi.org/10.1097/00006534-199404000-00026 Crossref, Medline, Google Scholar119 Hawkins GC, Bennett MH, van der Hulst AE. The outcome of chronic wounds following hyperbaric oxygen therapy: a prospective cohort study the first year interim report. Diving and Hyperbaric Medicine Journal. 2006; 36(2):94–98. Google Scholar120 Lin L-C, Yau G, Lin T-F, et al. The efficacy of hyperbaric oxygen therapy in improving the quality of life in patients with problem wounds. J Nurs Res 2006; 14(3):219–227. PMID: 00134372-200609000–00007. Crossref, Medline, Google Scholar121 Katarina H, Magnus L, Per K, Jan A. Diabetic persons with foot ulcers and their perceptions of hyperbaric oxygen chamber therapy. J Clin Nurs 2009; 18(14):1975–1985. https://doi.org/https://doi.org/10.1111/j.1365-2702.2008.02769.x Crossref, Medline, Google Scholar122 Sidhom M, Bennett M. Ulcer pain in a cohort of chronic ulcer patients referred for hyperbaric oxygen therapy. Unpublished. Google Scholar123 Hampson NB, Holm JR, Wreford-Brown CE, Feldmeier J. Prospective assessment of o
更多
查看译文
关键词
oxygen therapies,wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要