谷歌浏览器插件
订阅小程序
在清言上使用

Hydrogen-Deuterium Exchange Epitope Mapping Reveals Distinct Neutralizing Mechanisms for Two Monoclonal Antibodies Against Diphtheria Toxin.

Biochemistry(2018)

引用 22|浏览10
暂无评分
摘要
The diphtheria toxoid (DT) antigen is one of the major components in pediatric and booster combination vaccines and is known to raise a protective humoral immune response upon vaccination. However, a structurally resolved analysis of diphtheria toxin (DTx) epitopes with underlying molecular mechanisms of antibody neutralization has not yet been reported. Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and Biolayer Interferometry (BLI) assays, we have characterized two neutralizing anti-DTx monoclonal antibodies (mAbs), 2-25 and 2-18, by identifying the specific epitopes on the diphtheria toxin responsible for antibody binding. Our results show that both epitopes are conformational, and mechanistically distinct. Monoclonal antibody 2-25 binds selectively to the B-subunit (translocation and receptor domain) of DTx, blocking the heparin-binding EGF-like growth factor (HBEGF) binding site. In contrast, mAb 2-18 binds to the A-subunit (catalytic domain), partially covering the catalytic loop region that shuttles NAD during catalysis. The results are discussed in the context of antigen neutralization mechanisms and can ultimately help to reveal the underlying factors that contribute to Diptheria vaccine efficacy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要