Fault Site Pruning for Practical Reliability Analysis of GPGPU Applications.

MICRO(2018)

引用 48|浏览68
暂无评分
摘要
Graphics Processing Units (GPUs) have rapidly evolved to enable energy-efficient data-parallel computing for a broad range of scientific areas. While GPUs achieve exascale performance at a stringent power budget, they are also susceptible to soft errors, often caused by high-energy particle strikes, that can significantly affect the application output quality. Understanding the resilience of general purpose GPU applications is the purpose of this study. To this end, it is imperative to explore the range of application output by injecting faults at all the potential fault sites. This problem is especially challenging because unlike CPU applications, which are mostly single-threaded, GPGPU applications can contain hundreds to thousands of threads, resulting in a tremendously large fault site space - in the order of billions even for some simple applications. In this paper, we present a systematic way to progressively prune the fault site space aiming to dramatically reduce the number of fault injections such that assessment for GPGPU application error resilience can be practical. The key insight behind our proposed methodology stems from the fact that GPGPU applications spawn a lot of threads, however, many of them execute the same set of instructions. Therefore, several fault sites are redundant and can be pruned by a careful analysis of faults across threads and instructions. We identify important features across a set of 10 applications (16 kernels) from Rodinia and Polybench suites and conclude that threads can be first classified based on the number of the dynamic instructions they execute. We achieve significant fault site reduction by analyzing only a small subset of threads that are representative of the dynamic instruction behavior (and therefore error resilience behavior) of the GPGPU applications. Further pruning is achieved by identifying and analyzing: a) the dynamic instruction commonalities (and differences) across code blocks within this representative set of threads, b) a subset of loop iterations within the representative threads, and c) a subset of destination register bit positions. The above steps result in a tremendous reduction of fault sites by up to seven orders of magnitude. Yet, this reduced fault site space accurately captures the error resilience profile of GPGPU applications.
更多
查看译文
关键词
GPGPU Reliability,Fault injection,GPGPU Applications Error Resilience,Fault Site Pruning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要