A Contactless Measuring Method of Skin Temperature based on the Skin Sensitivity Index and Deep Learning

APPLIED SCIENCES-BASEL(2019)

引用 17|浏览26
暂无评分
摘要
Featured Application The NISDL method proposed in this paper can be used for real time contactless measuring of human skin temperature, which reflects human body thermal comfort status and can be used for control HVAC devices. Abstract In human-centered intelligent building, real-time measurements of human thermal comfort play critical roles and supply feedback control signals for building heating, ventilation, and air conditioning (HVAC) systems. Due to the challenges of intra- and inter-individual differences and skin subtleness variations, there has not been any satisfactory solution for thermal comfort measurements until now. In this paper, a contactless measuring method based on a skin sensitivity index and deep learning (NISDL) was proposed to measure real-time skin temperature. A new evaluating index, named the skin sensitivity index (SSI), was defined to overcome individual differences and skin subtleness variations. To illustrate the effectiveness of SSI proposed, a two multi-layers deep learning framework (NISDL method I and II) was designed and the DenseNet201 was used for extracting features from skin images. The partly personal saturation temperature (NIPST) algorithm was use for algorithm comparisons. Another deep learning algorithm without SSI (DL) was also generated for algorithm comparisons. Finally, a total of 1.44 million image data was used for algorithm validation. The results show that 55.62% and 52.25% error values (NISDL method I, II) are scattered at (0 degrees C, 0.25 degrees C), and the same error intervals distribution of NIPST is 35.39%.
更多
查看译文
关键词
contactless measurements,skin sensitivity index,thermal comfort,subtleness magnification,deep learning,piecewise stationary time series
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要