Enhanced biosynthesis of CdS nanoparticles through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli with fluorescence effect in detection of pyrogallol and gallic acid.

Talanta(2018)

引用 18|浏览21
暂无评分
摘要
In this work, CdS nanoparticles (CdS NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (CdS/AtPCS1-E. coli) with fluorescence (FL) performance for detection of pyrogallol and gallic acid was investigated. Through expression of the AtPCS1 gene inside E. coli cells by pET28b vector, biosynthesis of CdS NPs was greatly enhanced due to generation of phytochelatins (PCs, (γ-Glu-Cys)n-Gly, n ≥ 2) for efficient capture of Cd2+. The expression of AtPCS1 and concentration of glutathione (GSH) and PCs were detected by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and high performance liquid chromatography (HPLC), respectively. The morphology and component were checked through scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). FL effect with different experimental conditions were examined. In addition, it is also applied to determination of pyrogallol and gallic acid. These results revealed that multifunctional PCs could effectively facilitate biosynthesis of CdS NPs with higher yield, better distribution and lower cost while stronger FL intensity could be obtained for quantitative analysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要