Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur.

APMIS(2019)

引用 21|浏览42
暂无评分
摘要
Assessment of bone graft material efficacy is difficult in humans, since invasive methods like staged CT scans or biopsies are ethically unjustifiable. Therefore, we developed a novel large animal model for the verification of a potential transformation of synthetic bone graft substitutes into vital bone. The model combines multiple imaging methods with corresponding histology in standardized critical sized cancellous bone defect. Cylindrical bone voids (10ml) were created in the medial femoral condyles of both hind legs (first surgery at right hind leg, second surgery 3months later at left hind leg) in three merino-wool sheep and either (i) left empty, filled with (ii) cancellous allograft bone or (iii) a synthetic, gentamicin eluting bone graft substitute. All samples were analysed with radiographs, MRI, CT, DEXA and histology after sacrifice at 6months. Unfilled defects only showed ingrowth of fibrous tissue, whereas good integration of the cancellous graft was seen in the allograft group. The bone graft substitute showed centripetal biodegradation and new trabecular bone formation in the periphery of the void as early as 3months. CT gave excellent insight into the structural changes within the defects, particularly progressive allograft incorporation and the bone graft substitute biodegradation process. MRI completed the picture by clearly visualizing soft tissue ingrowth into unfilled bone voids and presence of fluid collections. Histology was essential for verification of trabecular bone and osteoid formation. Conventional radiographs and DEXA could not differentiate details of the ongoing transformation process. This model appears well suited for detailed invivo and exvivo evaluation of bone graft substitute behaviour within large bone defects.
更多
查看译文
关键词
Animal model,bone graft substitute,calcium sulphate,critical bone defect,hydroxyapatite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要