Multielemental + isotopic fingerprint enables linking soil, water, forage and milk composition, assessing the geographical origin of Argentinean milk.

Food chemistry(2019)

引用 27|浏览19
暂无评分
摘要
The aim of this work was to verify the usefulness of multielemental and isotopic fingerprint to differentiate the origin of milk samples from different areas, linking milk fingerprint with those corresponding to soil, water, and forage. Samples from four production areas in Argentina were analysed: 26 elements, δ2H, δ13C, δ15N and δ18O. Milk provenance was assessed using 16 variables (Na, Mg, Al, V, Co, Ni, As, Se, Rb, Sr, Mo, Hg, δ2H, δ18O, δ13C and K/Rb). Generalized Procrustes Analysis (GPA) demonstrated the consensus between soil, water, forage and milk, in addition to differences between studied areas. Canonical Correlation Analysis (CCA) demonstrated significant correlations between the milk-drinking water, milk-forage, and milk-soil. So far, we report a feasible method to establish the milk provenance, assessing the follow up from environmental matrixes (soil + water) to dairy products through the food web (forage) by a combined chemical-isotopic fingerprint.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要