Negative differential resistance as a critical indicator for the discharge capacity of lithium-oxygen batteries

NATURE COMMUNICATIONS(2019)

引用 20|浏览22
暂无评分
摘要
In non-aqueous lithium-oxygen batteries, the one-electron reduction of oxygen and subsequent lithium oxide formation both occur during discharge. This lithium oxide can be converted to insulating lithium peroxide via two different pathways: a second reduction at the cathode surface or disproportionation in solution. The latter process is known to be advantageous with regard to increasing the discharge capacity and is promoted by a high donor number electrolyte because of the stability of lithium oxide in media of this type. Herein, we report that the cathodic oxygen reduction reaction during discharge typically exhibits negative differential resistance. Importantly, the magnitude of negative differential resistance, which varies with the system component, and the position of the cathode potential relative to the negative differential resistance determined the reaction pathway and the discharge capacity. This result implies that the stability of lithium oxide on the cathode also contributes to the determination of the reaction pathway.
更多
查看译文
关键词
Batteries,Chemical physics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要