Entangling Distant Resonant Exchange Qubits Via Circuit Quantum Electrodynamics

Physical Review B(2016)

引用 37|浏览3
暂无评分
摘要
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
更多
查看译文
关键词
distant resonant exchange qubits,circuit quantum electrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要