Glyce: Glyph-vectors for Chinese Character Representations

CoRR(2019)

引用 184|浏览8
暂无评分
摘要
It is intuitive that NLP tasks for logographic languages like Chinese should benefit from the use of the glyph information in those languages. However, due to the lack of rich pictographic evidence in glyphs and the weak generalization ability of standard computer vision models on character data, an effective way to utilize the glyph information remains to be found. In this paper, we address this gap by presenting Glyce, the glyph-vectors for Chinese character representations. We make three major innovations: (1) We use historical Chinese scripts (e.g., bronzeware script, seal script, traditional Chinese, etc) to enrich the pictographic evidence in characters; (2) We design CNN structures (called tianzege-CNN) tailored to Chinese character image processing; and (3) We use image-classification as an auxiliary task in a multi-task learning setup to increase the model's ability to generalize. We show that glyph-based models are able to consistently outperform word/char ID-based models in a wide range of Chinese NLP tasks. We are able to set new state-of-the-art results for a variety of Chinese NLP tasks, including tagging (NER, CWS, POS), sentence pair classification, single sentence classification tasks, dependency parsing, and semantic role labeling. For example, the proposed model achieves an F1 score of 80.6 on the OntoNotes dataset of NER, +1.5 over BERT; it achieves an almost perfect accuracy of 99.8% on the Fudan corpus for text classification. (1 2)
更多
查看译文
关键词
language model,semantic role labeling,text classification,dependency parsing,bronzeware script,seal script,traditional chinese
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要