谷歌浏览器插件
订阅小程序
在清言上使用

Measuring in Situ Length Distributions of Polymer-Wrapped Monochiral Single-Walled Carbon Nanotubes Dispersed in Toluene with Analytical Ultracentrifugation

Langmuir(2019)

引用 2|浏览13
暂无评分
摘要
The length of a carbon nanotube is an important dimension that has to be adjusted to the requirements of an experiment or application, e.g., through sorting methods. So far, atomic force microscopy (AFM) has been the method of choice for measuring length distributions, despite being an ex situ method with apparent shortcomings. In this work, we explore analytical ultracentrifugation (AUC) as an in situ method for measuring the length distribution of polymer-wrapped (7, 5) single-walled carbon nanotubes dispersed in toluene. This is an AUC study of nanotubes in nonaqueous media, the preferred media for nanotubes used in device fabrication. In AUC, the temporally and spatially dependent change in optical absorption of a sample is measured under centrifugation. The resulting sedimentation curves can be deconvoluted with a standard data processing procedure (SEDFIT), to yield the sedimentation coefficient distribution. However, the conversion of the sedimentation coefficient distribution into a length distribution is nontrivial and requires finding a suitable model for the nanotube friction coefficient. Also, since AUC is based on optical absorption, it yields a volume distribution and not a number distribution as obtained from AFM reference data. By meeting these challenges and finding a surprisingly simple empirical flexible-chain-like model to describe the sedimentation behavior of one specific chiral structure, we suggest AUC as a viable method for measuring in situ nanotube length distributions of nonaqueous dispersions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要