Modular epistasis and the compensatory evolution of gene deletion mutants.

PLOS GENETICS(2019)

引用 40|浏览12
暂无评分
摘要
Screens for epistatic interactions have long been used to characterize functional relationships corresponding to protein complexes, metabolic pathways, and other functional modules. Although epistasis between adaptive mutations is also common in laboratory evolution experiments, the functional basis for these interactions is less well characterized. Here, we quantify the extent to which gene function (as determined by a genome-wide screen for epistasis among deletion mutants) influences the rate and genetic basis of compensatory adaptation in a set of 37 gene deletion mutants nested within 16 functional modules. We find that functional module has predictive power: mutants with deletions in the same module tend to adapt more similarly, on average, than those with deletions in different modules. At the same time, initial fitness also plays a role: independent of the specific functional modules involved, adaptive mutations tend to be systematically more beneficial in less-fit genetic backgrounds, consistent with a general pattern of diminishing returns epistasis. We measured epistatic interactions between initial gene deletion mutations and the mutations that accumulate during compensatory adaptation and found a general trend towards positive epistasis (i.e. mutations tend to be more beneficial in the background in which they arose). In two functional modules, epistatic interactions between the initial gene deletions and the mutations in their descendant lines caused evolutionary entrenchment, indicating an intimate functional relationship. Our results suggest that genotypes with similar epistatic interactions with gene deletion mutations will also have similar epistatic interactions with adaptive mutations, meaning that genome scale maps of epistasis between gene deletion mutations can be predictive of evolutionary dynamics. Author summary The effects of mutations often depend on the presence or absence of other mutations. This phenomenon, known as epistasis, has been used extensively to infer functional associations between genes. For example, genes that participate in the same functional module will often show a characteristic pattern of positive epistasis where the knockout of one gene will mask the deleterious effects of knockouts in the other genes. In the context of adaptation, epistasis can cause the outcomes of evolution to depend strongly on the initial genotype. Although studies have found that epistasis is common in laboratory populations, we do not know the extent to which the patterns of epistasis that reveal functional associations overlap with the patterns of epistasis that are important in evolution. Here, by comparing evolution in strains with gene deletions in different functional modules, we quantify the effect of functional epistasis on evolutionary outcomes. We find that mutants with deletions in the same module have more similar evolutionary outcomes, on average, than mutants with deletions in different modules. This suggests that screens for epistasis between gene deletion mutations will not only reveal functional interactions between those genes but may also predict evolutionary dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要