谷歌浏览器插件
订阅小程序
在清言上使用

Does Interfraction Cone Beam Computed Tomography Improve Target Localization in Prostate Bed Radiotherapy?

TECHNOLOGY IN CANCER RESEARCH & TREATMENT(2019)

引用 4|浏览9
暂无评分
摘要
Purpose: In this prospective phase II study, we investigated whether cone beam computed tomography scan was a superior method of image-guided radiotherapy relative to 2D orthogonal kilovoltage images in the post-radical prostatectomy setting. Methods: A total of 419 treatment fractions were included in this analysis. The shifts required to align the patient for each treatment were performed using 3D matching between cone beam computed tomography scans and the corresponding computed tomography images used for planning. This was compared with the shifts obtained from 2D orthogonal kilovoltage images, matching with the corresponding digitally reconstructed radiographs. Patients did not have fiducials inserted to assist with localization. Interfractional changes in the bladder and rectal volumes were subsequently measured on the cone beam computed tomography images for each fraction and compared to the shift differences between orthogonal kilovoltage and cone beam computed tomography scans. The proportion of treatment fractions with a shift difference exceeding the planning target volume of 7 mm, between orthogonal kilovoltage and cone beam computed tomography scans, was calculated. Results: The mean vertical, lateral, and longitudinal shifts resulted from 2D match between orthogonal kilovoltage images and corresponding digitally reconstructed radiographs were 0.353 cm (interquartile range: 0.1-0.5), 0.346 cm (interquartile range: 0.1-0.5), and 0.289 cm (interquartile range: 0.1-0.4), compared to 0.388 cm (interquartile range: 0.1-0.5), 0.342 cm (interquartile range: 0.1-0.5), and 0.291 cm (interquartile range: 0.1-0.4) obtained from 3D match between cone beam computed tomography and planning computed tomography scan, respectively. Our results show a significant difference between the kilovoltage and cone beam computed tomography shifts in the anterior-posterior direction (P = .01). The proportion of treatment fractions in which the differences in kilovoltage and cone beam computed tomography shifts between exceeded the 7 mm planning target volume margin was 6%, 2%, and 3% in the anterior-posterior, lateral, and superior-inferior directions, respectively. Conclusion: We prospectively demonstrated that the daily use of volumetric cone beam computed tomography for treatment localization in post-radical prostatectomy patients demonstrated an increased need for a shift in patient position. This suggests that in post-radical prostatectomy patients the daily cone beam computed tomography imaging improved localization of the prostate bed and may have prevented a limited number of geographic misses, compared to daily kilovoltage imaging that was not assisted with fiducials.
更多
查看译文
关键词
cone beam CT,image-guided radiotherapy,prostate cancer,prostatectomy,kV imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要