谷歌浏览器插件
订阅小程序
在清言上使用

Detecting coevolution of positively selected in turtles sperm-egg fusion proteins.

Mechanisms of Development(2019)

引用 6|浏览40
暂无评分
摘要
Physically interacting sperm-egg proteins have been identified using gene-modified animals in some mammal species. Three proteins are essential for sperm-egg binding: Izumo1 on the sperm surface, and JUNO and CD9 on the egg surface. Most proteins linked to reproductive function evolve rapidly among species by positive selection, and have correlated evolutionary rates to compensate for changes on both the sperm and egg. Up to now, interactions between sperm and egg proteins have not been identified in non-mammalian vertebrates, such as turtles that have interspecific hybrids that can produce surviving F1 generations. To explore the potential physical interactions of sperm-egg proteins in turtle species, the coding region of Izumo1, JUNO, and CD9 homologous genes (named Tu-Izumo1, Tu-JUNO, and Tu-CD9) in six turtle species (Mauremys reevesii, M. mutica, M. sinensis, Cistoclemmys flavomarginata, Platysternon megacephalum and Chrysemys picta bellii) were identified, amplified, and sequenced, and tissue-specific expression was analyzed in M. reevesii. We constructed phylogenetic trees and analyzed the signatures of coevolution between sperm-egg protein pairs using MirrorTree Server and linear regression methods. The results showed that Tu-Izumo1, Tu-JUNO, and Tu-CD9 proteins have correlated evolutionary rates, and that the area where Tu-Izumo1 interacts with Tu-JUNO has only one positive selection site in some turtle species. These results suggest there is a potential interaction between Tu-Izumo1 and Tu-JUNO among turtles that can interbreed, and that a significantly lower positive selection in the interaction region may be one of the reasons why turtle hybrids are so common. Further studies are required to uncover Tu-Izumo1, Tu-JUNO and Tu-CD9 protein biological functions during gamete fusion.
更多
查看译文
关键词
Sperm-egg fusion,Tu-Izumo1,Tu-JUNO,Tu-CD9,Hybridization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要