A secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile

Ore Geology Reviews(2016)

引用 25|浏览10
暂无评分
摘要
Platinum-group element (PGE) and gold inclusions are usually present in peridotites and chromitite deposits associated with ophiolites. Here, we present the first detailed study of the mineralogy of precious metals in ultramafic rocks hosted in the Paleozoic Coastal Accretionary Complex of Central Chile. In these ultramafic rocks the mineralization of precious metals is associated with small meter-size pods and veins of massive chromitite hosted in serpentinite-filled shear zones. Crystallographic orientation maps of single chromite grains, obtained using the Electron-Backscattered Secondary Diffraction technique, allow us to identify two types of chromite in the precious-metal bearing chromitites: (1) Type A chromite, characterized by an average misorientation per grain of ≤2° and chemically homogeneous cores surrounded by a porous rim with abundant inclusions of chlorite, and (2) Type B chromite, which exhibits higher degrees of misorientation (2–8°) and porosity, and abundant silicate inclusions, but a relatively homogeneous chemical composition. In situ analyses using EMPA and LA-ICP-MS for major, minor and trace elements indicate that composition of the magmatic chromite is only preserved in the cores of Type A chromite grains. Core to rim chemical trends in these Type A chromites are characterized by a progressive increase of the Cr# with a decrease of the Mg#, loss of Al and addition of Fe2+ in the porous rim. The observed changes in the microstructure and chemistry of chromite are associated with the infiltration of external fluids through shear zones filled with antigorite (±talc) developed in partly serpentinized peridotites (i.e., olivine–lizardite dunites). Thermodynamic calculations using the phase equilibria relations in the system Cr2O3–MgO–FeO–Al2O3–SiO2–H2O (CrMFASH) indicate that Fe2+-rich porous chromite+chlorite replaced the original assemblage chromite+olivine in the chromitite while prograde antigorite was formed. According to our results this transformation occurred at ~510–560°C when external fluids penetrated the ultramafic/chromitite bodies through shear zones. These temperatures are slightly higher than estimated for the metamorphic peak in the host metapelitic rocks (i.e., ~420°C at 9.3kbar), suggesting that a hotter ultramafic body was captured by the metasediments of the accretionary prism during their exhumation through subduction channel. Chlorite geothermometry yielded a wide range of lower temperature from 430 to 188°C, for chlorite present in the porous chromite rims. These results are in agreement with the retrograde overprint under greenchist-facies metamorphism conditions recorded by metapelitic host rocks and minor volcanogenic massive sulphide deposits in the area (300–400°C, ~3–4kbar). We suggest that although initially decoupled, the chromitite-bearing ultramafic rocks and their metasedimentary host undergone a common metamorphic PT pathway of exhumation during the formation and evolution of the subduction-related accretionary complex.
更多
查看译文
关键词
Precious metals,Chromite,Serpentinite,Metamorphism,Accretionary complex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要