Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania

Earth and Planetary Science Letters(2016)

引用 32|浏览49
暂无评分
摘要
To investigate the behaviour of Mg isotopes during carbonatite magmatism, we analyzed Mg isotopic compositions of natrocarbonatites and peralkaline silicate rocks from Oldoinyo Lengai, Tanzania. The olivine melilitites from the vicinity of Oldoinyo Lengai have homogeneous and mantle-like Mg isotopic compositions (δ26Mg of −0.30 to −0.26‰), indicating limited Mg isotope fractionation during mantle melting. The highly evolved peralkaline silicate rocks not related to silicate–carbonatite liquid immiscibility, including phonolites from the unit Lengai I, combeite–wollastonite nephelinites (CWNs) from the unit Lengai II A and carbonated combeite–wollastonite–melilite nephelinites (carbCWMNs), have δ26Mg values (from −0.25 to −0.10‰) clustered around the mantle value. By contrast, the CWNs from the unit Lengai II B, which evolved from the silicate melts that were presumably generated by silicate–carbonatite liquid immiscibility, have heavier Mg isotopes (δ26Mg of −0.06 to +0.09‰). Such a difference suggests Mg isotope fractionation during liquid immiscibility and implies, based on mass-balance calculations, that the original carbonatite melts at Lengai were isotopically light. The variable and positive δ26Mg values of natrocarbonatites (from +0.13 to +0.37‰) hence require a change of their Mg isotopic compositions subsequent to liquid immiscibility. The negative correlations between δ26Mg values and contents of alkali and alkaline earth metals of natrocarbonatites suggest Mg isotope fractionation during fractional crystallization of carbonatite melts, with heavy Mg isotopes enriched in the residual melts relative to fractionated carbonate minerals. Collectively, significant Mg isotope fractionation may occur during both silicate–carbonatite liquid immiscibility and fractional crystallization of carbonatite melts, making Mg isotopes a potentially useful tracer of these processes relevant to carbonatite petrogenesis.
更多
查看译文
关键词
magnesium isotopes,isotope fractionation,carbonatite magmatism,liquid immiscibility,Oldoinyo Lengai
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要