Four-body long-range interactions between ultracold weakly-bound diatomic molecules

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS(2016)

引用 4|浏览3
暂无评分
摘要
Using the multipolar expansion of electrostatic and magnetostatic potential energies, we characterize the long-range interactions between two weakly-bound diatomic molecules, taking as an example the paramagnetic Er-2 Feshbach molecules which were produced recently. Since inside each molecule individual atoms conserve their identity, the intermolecular potential energy can be expanded as the sum of pairwise atomic potential energies. In the case of Er-2 Feshbach molecules, we show that the interaction between atomic magnetic dipoles gives rise to the usual R-3 term of the multipolar expansion, where R is the intermolecular distance, but also to additional terms scaling as R-5, R-7, and so on. Those terms are due to the interaction between effective molecular multipole moments, and are strongly anisotropic with respect to the orientation of the molecules. Similarly, the atomic pairwise van der Waals interaction results in R-6, R-8, ... terms in the intermolecular potential energy. By calculating the reduced electric-quadrupole moment of erbium ground level H-3(6) parallel to (Q) over cap (2) parallel to H-3(6) = -1.305 a.u., we also demonstrate that the electric-quadrupole interaction energy is negligible with respect to the magnetic dipole and van der Waals interaction energies. The general formalism presented in this article can be applied to calculate the long-range potential energy between arbitrary charge distributions composed of almost free subsystems.
更多
查看译文
关键词
long-range interactions,theory,Feshbach molecules,multipolar expansion,potential-energy curves
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要