Current-Driven Nanowire Formation On Surfaces Of Crystalline Conducting Substrates

APPLIED PHYSICS LETTERS(2016)

引用 14|浏览14
暂无评分
摘要
The formation and precise manipulation of nanoscale features by controlling macroscopic forces is essential to advancing nanotechnology. Toward this end, we report here a theoretical study on formation of nanowires with precisely controlled widths, starting from single-layer conducting islands on crystalline conducting substrates under the controlled action of macroscopic forcing provided by an externally applied electric field that drives island edge electromigration. Numerical simulations based on an experimentally validated model and supported by linear stability theory show that large-size islands undergo a current-induced fingering instability, leading to nanowire formation after finger growth. Depending on the substrate surface crystallographic orientation, necking instabilities after fingering lead to the formation of multiple parallel nanowires per island. In all cases, the axis of the formed nanowires is aligned with the direction of the externally applied electric field. The nanowires have constant widths, on the order of 10 nm, which can be tuned by controlling the externally applied electric field strength. Our findings have important implications for developing future lithography-free nanofabrication and nanoelectronic patterning techniques. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要