Development and validation of a cyclodextrin-modified capillary electrophoresis method for the enantiomeric separation of vildagliptin enantiomers.

ELECTROPHORESIS(2016)

引用 23|浏览26
暂无评分
摘要
The enantiomers of vildagliptin, an orally available and selective dipeptidyl-peptidase-4 inhibitor used for the treatment of type II diabetes, have been separated by CD-modified CZE, using uncoated fused-silica capillary. After screening 13 negatively charged CD derivatives as potential chiral selectors, sulfobutyl-ether-alpha-CD (SBE-alpha-CD) was selected for the enantioseparation. For the optimization, a factorial analysis study was performed by orthogonal experimental design. Six experimental factors were chosen as variable parameters: temperature, applied voltage, chiral selector and BGE concentrations, pH, and the parameters of the hydrodynamic injection. The optimized system still was not considered final as the second peak (S-enantiomer) migrated too close to the EOF, resulting in a potential inaccuracy during the determination of the chiral impurity. To fine-tune the method "one factor at a time" variation approach was applied. The final method (applying 15 degrees C capillary temperature, 40 mbar x 4 s hydrodynamic injection, 25 kV voltage in 75 mM acetate-Tris buffer [pH 4.75] containing 20 mM SBE-alpha-CD as chiral selector) was validated according to the ICH guideline. RSD percentage of the resolution value, migration times, and corrected peak areas were below 5% during testing repeatability and intermediate precision. LOD and LOQ values were found to be 2.5 and 7.5 mu g/mL, respectively. The method is considered linear in the 7.5-180 mu g/mL range for the R-enantiomer. The robustness of the method was justified using Plackett-Burmann statistical experimental design.
更多
查看译文
关键词
Cyclodextrin,DPP-4 inhibitor,Enantiomeric impurity,Enantioseparation,Orthogonal experimental design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要