Doxorubicin-Functionalized Silica Nanoparticles Incorporated into a Thermoreversible Hydrogel and Intraperitoneally Administered Result in High Prostate Antitumor Activity and Reduced Cardiotoxicity of Doxorubicin

ACS Biomaterials Science & Engineering(2016)

引用 37|浏览8
暂无评分
摘要
Described here is an anticancer material based on colloidal mesoporous silica nanoparticles (MSNs) functionalized with doxorubicin (DOX), and incorporated into Pluronic F127 hydrogels for prolonged release, with a potential therapeutic application for prostate cancer treatment. The MSNs have spherical morphology, size of about 60 nm, surface area of 970 cm2 g–1 and average pore width of 2.0 nm. A high colloidal stability for the MSNs in the physiological medium used for in vivo administration (NaCl 0.9% w/v) could be attained in the presence of PF127 (from 5 to 18 wt %), where depletion repulsion forces prevent MSN agglomeration. By conjugating DOX, MSN and PF127 (18 wt %) in NaCl 0.9%, the hybrid system has a gelation temperature of 21 °C, which allowed its in vivo administration in the liquid form and further in situ gelation, generating a drug depot system inside the animals after peritoneal injection. The systems were tested in rats with chemically induced prostate cancer and, after this treatment, hi...
更多
查看译文
关键词
mesoporous silica nanoparticles,Pluronic F-127,poloxamer,hydrogel,doxorubicin,prostate cancer,cardiotoxicity,drug delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要