Many-Body Theory Of Magnetoelasticity In One Dimension

PHYSICAL REVIEW B(2017)

引用 3|浏览36
暂无评分
摘要
We construct a many-body theory of magnetoelasticity in one dimension and show that the dynamical correlation functions of the quantum magnet, connecting the spins with phonons, involve all energy scales. Accounting for all magnetic states nonperturbatively via the exact diagonalization techniques of Bethe ansatz, we find that the renormalization of the phonon velocity is a nonmonotonous function of the external magnetic field and identify a new mechanism for attenuation of phonons-via hybridization with the continuum of excitations at high energy. We conduct ultrasonic measurements on a high-quality single crystal of the frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 in its nearly one-dimensional regime and confirm the theoretical predictions, demonstrating that ultrasound can be used as a powerful probe of strong correlations in one dimension.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要