Estimating Nitrate Leaching to Groundwater from Orchards: Comparing Crop Nitrogen Excess, Deep Vadose Zone Data-Driven Estimates, and HYDRUS Modeling

VADOSE ZONE JOURNAL(2016)

引用 56|浏览9
暂无评分
摘要
Large spatial and temporal variability in water flow and N transport dynamics poses significant challenges to accurately estimating N losses form orchards. A 2-yr study was conducted to explore nitrate (NO3-) leaching below the root zone of an almond [Prunus dulcis (Mill.) D. A. Webb] orchard. Temporal changes in water content, pore water NO3- concentrations and soil water potential were monitored within and below the root zone to a soil depth of 3 m at eight sites, which represented spatial variations in soil profiles within an almond orchard in California. Orchard monthly average NO3- concentrations below the root zone ranged from 225 to 710 mg L-1 with mean annual concentration of 468 and 333 mg L-1 for the 2014 and 2015 growing seasons, respectively. Despite the huge variability in pore water NO3- concentration between sites, the larger spatiotemporal scale N losses estimated at the annual orchard scale from surface N mass balance, vadose zone based water and N mass balance, flow calculations, and HYDRUS modeling were all on the same order of magnitude (80-240 kg N ha(-1) y(-1)). All methods indicated that most of the N losses occur early in the growing season (February-May) when fertilizer is applied to wet soil profiles. Simple mass balance (i.e., N load applied minus N load removed) provided a good proxy of the annual N accumulation in the soil profile at the orchard scale. Reduction of N losses at the orchard scale would require alternative fertigation and irrigation practices to decrease the difference between the N load removed and the N load applied to orchards.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要