Strongly deterministic population dynamics in closed microbial communities

PHYSICAL REVIEW X(2015)

引用 36|浏览14
暂无评分
摘要
Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES) as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
更多
查看译文
关键词
deterministic population dynamics,closed microbial communities,microbial communities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要