谷歌浏览器插件
订阅小程序
在清言上使用

Degradation of Pt/C Electrocatalysts Having Different Morphology in Low-Temperature PEM Fuel Cells

Nanotechnologies in Russia(2016)

引用 17|浏览1
暂无评分
摘要
The electrochemical degradation of platinum–carbon catalysts with different morphology has been studied under model conditions in low-temperature proton exchange membrane fuel cells. It has been found that catalysts with an average size of platinum nanoparticles ranging from 2 to 3 nm uniformly distributed over the carbon support exhibit the best current–voltage characteristics; however, they have also the highest degradation rate. It is shown that the main cause of Pt/C electrocatalyst degradation consists of both the detachment of small platinum particles from the carbon support and the recrystallization of platinum, leading to an increase in the average particle size. On the contrary, the catalysts having the initial average size of platinum particles ranging from 3 to 4 nm show a considerable stability in current–voltage characteristics even after 10000 cycles of accelerated degradation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要