H3b-8800, An Orally Bioavailable Modulator Of The Sf3b Complex, Shows Efficacy In Spliceosome-Mutant Myeloid Malignancies

BLOOD(2016)

引用 26|浏览7
暂无评分
摘要
Mutations in RNA splicing factors confer an alteration of function and are common in patients with myelodysplastic syndrome (MDS, ~45%), chronic myelomonocytic leukemia (CMML, ~60%), and acute myeloid leukemia (AML) derived from these conditions. Recent data suggest that spliceosome-mutant cells are preferentially sensitive to genetic or pharmacologic splicing modulation compared with wildtype (WT) counterparts. Here, we describe the discovery of H3B-8800, a potent and orally bioavailable modulator of the SF3b complex, and demonstrate efficacy in models of spliceosome mutant myeloid malignancies including a novel xenograft system for CMML. H3B-8800 was identified through a medicinal chemistry approach aimed at identifying compounds with preferential lethality in spliceosome mutant cells. Using a scintillation proximity assay, we demonstrated that H3B-8800 potently binds to SF3b complexes containing either WT or mutant SF3B1 protein. Consistent with this, H3B-8800 showed dose-dependent modulation of splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. Selectivity of H3B-8800 for the SF3b complex was confirmed through observing resistance in cells expressing SF3B1 R1074H , an SF3B1 mutation previously shown to confer resistance to natural product splicing modulators. In the above biochemical and cellular assays, H3B-8800 affected splicing similarly regardless of spliceosome genotype. However, preferential inhibition of in vitro cell growth was observed in isogenic AML cells with endogenous knock-in of SF3B1 K700E or SRSF2 P95H mutations compared to WT counterparts. In animals xenografted with SF3B1 K700E knock-in K562 cells, oral H3B-8800 treatment demonstrated dose-dependent splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. Similarly, anti-leukemic efficacy and improved survival were observed with H3B-8800 treatment in mice transplanted with Srsf2 P95H / MLL-AF9 mouse AML cells, a result not seen in Srsf2 WT/ MLL-AF9 counterpart leukemias. To understand the preferential effects on spliceosome mutant cells, RNA-seq analysis of isogenic K562 cells treated with H3B-8800 was performed. H3B-8800 induced intron retention and exon skipping, however these effects were not global and introns preferentially retained by H3B-8800 were shorter and more GC-rich compared to those unaffected by drug ( Figure A ). Interestingly, a substantial number of genes experiencing intron retention with H3B-8800 themselves encoded spliceosome components ( Figure B ). This suggests that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the exquisite dependency of these cells on normal expression of spliceosome proteins. Next we aimed to understand the therapeutic potential of H3B-8800 in the context of CMML due to the high frequency of SRSF2 mutations and the need for improved outcome in this disorder. To this end, we developed a xenotransplantation model through direct intrafemoral injection of CD34+ cells from CMML patients into NSGS mice: a variant of NSG mice that express human IL3, SCF and GM-CSF. We specifically focused on CMML with 200,000 CD34+ cells achieved robust engraftment for all patients (n=7) with rapid lethality (median of 39 days). In vivo H3B-8800 administration substantially reduced leukemic burden in spliceosome-mutant but not spliceosome-WT CMML PDX ( Figure C ). Furthermore, 2.2-fold reductions in immunophenotypically-defined leukemia initiating cells were seen with H3B-8800 versus vehicle treatment in spliceosome-mutant CMML compared with no change in those mice engrafted with spliceosome-WT CMML. These data identify a novel therapeutic approach with selective lethality in myeloid cells bearing a spliceosome mutation. Despite the essential nature of splicing, CMML/AML cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. These data demonstrate the therapeutic potential of splicing modulation in spliceosome mutant cancers and H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML and CMML. Disclosures Buonamici: H3 Biomedicine: Employment. Thomas: H3 Biomedicine: Employment. Seiler: H3 Biomedicine: Employment. Chan: H3 Biomedicine: Employment. Caleb: H3 Biomedicine: Employment. Darman: H3 Biomedicine: Employment. Fekkes: H3 Biomedicine: Employment. Karr: H3 Biomedicine: Employment. Liu: H3 Biomedicine: Employment. Meeske: H3 Biomedicine: Employment. Mizui: Eisai: Employment. Pazolli: H3 Biomedicine: Employment. Prajapati: H3 Biomedicine: Employment. Wang: Eisai: Employment. Warmuth: H3 Biomedicine: Employment. Yu: H3 Biomedicine: Employment. Zhu: H3 Biomedicine: Employment. Smith: H3 Biomedicine: Employment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要