Influence of thickness on crystallinity in wafer-scale GaTe nanolayers grown by molecular beam epitaxy

AIP ADVANCES(2017)

引用 29|浏览7
暂无评分
摘要
We grew wafer-scale, uniform nanolayers of gallium telluride (GaTe) on gallium arsenide (GaAs) substrates using molecular beam epitaxy. These films initially formed in a hexagonal close-packed structure (h-GaTe), but monoclinic (m-GaTe) crystalline elements began to form as the film thicknesses increased to more than approximately 90 nm. We confirmed the coexistence of these two crystalline forms using x-ray diffraction and Raman spectroscopy, and we attribute the thickness-dependent structural change to internal stress induced by lattice mismatch with the substrate and to natural lattice relaxation at the growth conditions. (C) 2017 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要