Quantum Anomalous Hall Insulator Phase In Asymmetrically Functionalized Germanene

Bulletin of the American Physical Society(2017)

引用 18|浏览23
暂无评分
摘要
Using first-principles computations, we discuss topological properties of germanene in buckled as well as planar honeycombs with asymmetric passivation via hydrogen and nitrogen (GeHN) atoms. GeHN in the planar structure is found to harbor a quantum anomalous Hall (QAH) insulator phase. Our analysis indicates that the buckled GeHN also possesses a QAH phase under tensile strain. We computed the associated Chern numbers and edge states to confirm the presence of the QAH state. In particular, chiral edge bands connecting conduction and valence bands were found at the edges of a planar zigzag GeHN nanoribbon. By considering a range of buckling distances, we demonstrate how the system undergoes the transition from the trivial to the QAH phase between the buckled and planar structures. Finally, we show CdTe(111) to be a suitable substrate for supporting buckled germanene in the QAH phase. Our results suggest that functionalized germanene could provide a robust QAH-based platform for spintronics applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要