谷歌浏览器插件
订阅小程序
在清言上使用

Powerful Coulomb-drag Thermoelectric Engine

Physical review B/Physical review B(2017)

引用 30|浏览0
暂无评分
摘要
We investigate a thermoelectric nanoengine whose properties are steered by Coulomb interaction. The device whose design decouples charge and energy currents is made up of two interacting quantum dots connected to three different reservoirs. We show that, by tailoring the tunnel couplings, this setup can be made very attractive for energy-harvesting prospects, due to a delivered power that can be of the order of the quantum bound [R.S. Whitney, Phys. Rev. Lett. 112, 130601 (2014); Entropy 18, 208 (2016)], with a concomitant fair efficiency. To unveil its properties beyond the sequential quantum master equation, we apply a nonequilibrium noncrossing approximation in the Keldysh Green's function formalism, and a quantum master equation that includes cotunneling processes. Both approaches are rather qualitatively similar in a large operating regime where sequential tunneling alone fails.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要