Multi-energy penalized maximum-likelihood reconstruction for x-ray security imaging

Proceedings of SPIE(2017)

引用 1|浏览30
暂无评分
摘要
X-ray imaging for security screening is a challenging application that requires simultaneous satisfaction of seemingly incompatible constraints, including low cost, high throughput, and reliable detection of threats. We take a principled computational imaging approach to system design. Mathematical models of the underlying physics and a Huber-class penalty function yield a penalized maximum-likelihood problem. We extend our iterative algorithm for computing linear attenuation coefficients to use multiple energy bins in the SureScan x1000, which has an unconventional, fixed-source geometry. The goal is to maintain the spatial resolution of the single-energy reconstruction while providing information for material characterization used for detection of threats.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要