Separating the configurational and vibrational entropy contributions in metallic glasses

NATURE PHYSICS(2017)

引用 55|浏览33
暂无评分
摘要
Glassy materials exist in nature and play a critical role in technology, but key differences between the glass, liquid and crystalline phases are not well understood. Over several decades there has been controversy about the specific heat absorbed as a glass transforms to a liquid—does this originate from vibrational entropy or configurational entropy? Here we report direct in situ measurements of the vibrational spectra of strong and fragile metallic glasses in the glass, liquid and crystalline phases. For both types of material, the measured vibrational entropies of the glass and liquid show a tiny excess over the crystal, representing less than 5% of the total excess entropy measured with step calorimetry. These results reveal that the excess entropy of metallic glasses is almost entirely configurational in origin, consistent with the early theories of Gibbs and co-workers describing the glass transition as a purely configurational transition.
更多
查看译文
关键词
Glasses,Structure of solids and liquids,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要