Characterization of the Orai1 mediated Ca2+ entry in mouse pancreatic ductal cells

Pancreatology(2017)

引用 0|浏览10
暂无评分
摘要
Dysfunction of the ubiquitin-proteasome system (UPS) and calcium homeostasis has been implicated in the neurodegeneration of Alzheimer’s and Parkinson’s diseases. The cytosolic calcium concentration is maintained by store-operated calcium entry (SOCE), which is repressed by Alzheimer’s disease-associated mutants, such as mutant presenilins. We hypothesized that inhibition of UPS impacts SOCE. This study showed that pretreatment with sub-lethal levels of proteasome inhibitors, including MG-132 and clasto-lactacystin-β-lactone (LA), reduced SOCE after depletion of endoplasmic reticulum calcium in rat neurons. With the same treatment, MG-132 and LA reduced the protein levels of stromal interaction molecule 1and 2 (STIM1/2), but not the levels of Orai1 and canonical transient receptor potential channel 1 (TRPC1). STIM1 or STIM2 protein was mobilized to lysosome by MG-132/LA treatment as observed under an immunofluorescence confocal laser microscope. In the neurons, MG-132 and LA degraded p62/SQSTM1, promoted autophagy, converted LC3I to LC3II, and promoted co-localization of LC3 and lysosomes. Rapamycin, which enhances autophagy, reduced STIM1/2 protein levels, whereas bafilomycin, which inhibits autophagy, increased their protein levels. The protein levels of STIM1/2 and the amplitude of SOCE were decreased in SH-SY5Y with decreased protein level of proteasome subunit beta type-5 induced by shRNA. We conclude that sub-lethal levels of proteasome inhibition reduce SOCE and promote autophagy-mediated degradation of STIM1/2. UPS inhibition, a common finding in neurodegenerative diseases, interferes with calcium homeostasis via repression of SOCE.
更多
查看译文
关键词
orai1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要