Utilization of surface modified phyllosilicate mineral for heavy metals removal from aqueous solutions

Egyptian Journal of Petroleum(2018)

引用 17|浏览5
暂无评分
摘要
The objective of this work is to enhance the adsorbing performance of the natural Egyptian phyllosilicate mineral, glauconite (greensand), through surface modification to obtain a particular combination of physical and chemical properties. It was found that Zn removal increased from 84% to 94%, while Pb removal varied from 96.67% to 99% by using 10–25g/l modified glauconite in a solution having 50mg/l Zn2+ and 30mg/l pb2+ ions. Adsorption data were investigated using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Linear regression methods are used to determine adsorption capacities and optimum adsorption isotherms. R2 value of Langmuir isotherm model for pb2+ is higher than other models. The maximum monolayer coverage (Qo) from Langmuir isotherm model was calculated to be 15.363 and 21.654mg/g and the separation factor indicating a favorable sorption experiment is 0.0324 and 0.13207 for Zn2+ and Pb2+ respectively. Also from Freundlich isotherm model, the intensities of adsorption (n) that indicated favorable sorption are 1.3036 and 1.364 for Zn2+ and Pb2+ respectively. The heat of sorption process was calculated from Temkin isotherm model to be 6.44101 and 4.1353J/mol for Zn2+ and Pb2+ respectively, that indicated to the physisorption process which B<20kJ/mol so, Temkin isotherm is not fitted with experimental adsorption but the mean free energy was calculated from DRK isotherm which are 24.693 and 47.093kJ/mol, where ED<8 proved that the adsorption experiment followed a chemisorption process. So the relative adsorption capacity for metals was in the order Pb更多
查看译文
关键词
Adsorption,Heavy metals,Surface modification,Glauconite,Equilibrium isotherms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要